The flavone C-glycosides saponaretin and homoorientin have been isolated previously from gentians belonging to the sections <u>Coelanthe</u> and <u>Cyclostigma</u> [4, 5]. This is the first time that these flavonoids have been isolated in the herbage of large-leaved gentian.

LITERATURE CITED

- 1. É. D. Georgobiani and N. F. Komissarenko, Soobshch. Akad. Nauk GSSR <u>53</u>, No. 2, 365 (1969).
- 2. N. V. Chernobrivaya, N. F. Komissarenko, V. S. Batyuk, et al., Khim. Prir. Soedin., No. 5, 634 (1970).
- 3. Z. Oyuungerel, N. F. Komissarenko, V. S. Batyuk, and A. Lamzhav, Khim.-farm. Zh., No. 8, 967 (1984).
- 4. K. Hostettmann, M. D. Luong, M. Goetz, and A. Jacot-Guillarmod, Phytochemistry, 14, 449 (1975).
- 5. K. Hostettman and A. Jacot-Guillarmod, Phytochemistry, 16, No. 4, 481 (1977).
- 2,6,6-TRIMETHYLCYCLOHEPTA-2,4-DIENONE AND 3,6,6-TRIMETHYLCYCLOHEPTA-
- 2,4-DIENONE COMPONENTS OF THE TURPENTINE FROM Pinus sylvestris
 - O. G. Vyglazov, É. N. Manukov, B. G. Udarov,

UDC 547.9:547.517

G. N. Bazhina, T. R. Urbanovich, and L. V. Izotova

The oxygen-containing part of pine oleoresin turpentine contains more than 32 compounds, among which only 15 have been identified [1]. These are mainly alcohols, esters, and ketones having p- and m-menthane and bicyclo[3.1.1]- and bicyclo[2.2.1]heptane skeletons. In the present paper we give the results of the isolation and the determination of the structures of two previously unknown components present in the oxygen-containing fraction of pine oleoresin turpentine from the Borisov wood-chemical factory in amounts of 1.2-1.4% [component (I)] and 1.5-1.7% [component (II)].

From the saponified fraction, OH-containing components were removed by boiling with ${\rm H_3BO_3}$. The organic part (47% of the total weight of the fraction) was treated with NaHSO_3. After the separation of the bisulfite derivative and its decomposition, the carbonyl-containing concentrate (24%) was subjected to fractional distillation (column of 100 theoretical plates, reflux No. 100). Two fractions were obtained, one of which contained 18.4% of component (I) and the second 24.7% of component (II). The individual components (I) and (II) were isolated from the fractions by PGLC [2]. Component (I), with a purity of 99.4% and the composition ${\rm C_{10}H_{14}O}$ had: ${\rm np^{20}}$ 1.5060, ${\rm d_4^{20}}$ 0.9700. Its physicochemical properties and UV spectrum corresponded to those of 2,6,6-trimethylcyclohepta-2,4-dienone (eucarvone) [3]. Component (II), with a purity of 99.7% and the composition ${\rm C_{10}H_{14}O}$, had: ${\rm np^{20}}$ 1.5101, ${\rm dp^{20}}$ 0.9680. Its physicochemical properties corresponded to those of 3,6,6-trimethylcyclohepta-2,4-dienone [4]. The structures of the ketones isolated, (I) and (II), were confirmed by their PMR and ${}^{13}{\rm C}$ spectra (WN-360 instrument, in CDCl3, with HMDS as internal standard).

TABLE 1. Chemical Shifts of the Protons at C-n (δ, ppm)

Ketone	C-2	C-3	C-4	C-5	C-7	C- 8	C-9 and C-10
]]]	5,97 s	6,44 d	5,75 dd 6.02 d	5,93 d 5,68 d	2,49 s 2,54 s	1.87 s 1.95 s	1.01 s 1,05 s

Institute of Physical Organic Chemistry, Belorussian SSR Academy of Sciences, Minsk. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 289-290, March-April, 1989. Original article submitted May 5, 1988.

TABLE 2. Chemical Shifts of the 13 C Nuclei (δ , ppm)

Ketone		C-2	C-3	C-4	C-5	C-7	C-8, 9	C-10
1	200,8 s 200 s	169.9 s 150.4 d	1 5 0.5 d	134,5 d 130,2 d	123,1 d 127 d	51,1 t 54, 5 t	21.8 q 26.9 q 27.5 q 21,8 q	33,4 q 33 ,2 q

Tables 1 and 2 give the chemical shifts of the protons and $^{13}\mathrm{C}$ nuclei in the compounds isolated.

Thus, the results that we have obtained show the presence in industrial turpentine from Pinus sylvestris L. of oxygen-containing monoterpenoids with 7-membered rings.

LITERATURE CITED

- 1. I. Bardyshev and A. L. Pertsovskii, The Nature of the Oxygen-Containing Compounds Present in Turpentines, in: Synthetic Products from Rosin and Turpentin [in Russian], Volgo-Vyat-skoe Izdat, Gor'kii (1970), p. 70.
- 2. É. N. Manukov and T. R. Urbanovich, Izv. Akad. Nauk BSSR, Ser. Khim. Nauk, 70 (1985).
- 3. J. R. B. Campbell, E. M. Islam, and R. A. Raphael, J. Am. Chem. Soc., 4096 (1956).
- 4. H. Schmidt, R. Richter, and M. Mühlstädt, Chem. Ber., 96, 2636 (1963).

CHEMICAL COMPOSITION OF ESSENTIAL OILS OF PLANTS OF THE GENUS Schizonepeta

A. V. Rumak and V. A. Khan

UDC 547.913

The genus <u>Schizonepeta</u> Briq. is represented in the USSR by two species: <u>S. annua</u> (Pall.) Schischk. and <u>S. multifida</u> (L.) Briq., growing in Western and Eastern Siberia and in the Far East [1]. The essential oils of these species, which differ sharply in antifungal activity, have served as a basis for a detailed chemical study, and this all the more since their component compositions vary greatly according to the ecological conditions of growth [2-5].

We have investigated the chemical compositions of the essential oils of \underline{S} . annua and \underline{S} . multifida growing in the Gorno-Altai. The plant material was gathered in 1986 in the flowering phase: \underline{S} . annua in the Ongudai region of the rocky wastes at the confluence of the rivers Chui and Katuni, and \underline{S} . multifida in the Kosh-Agach region in the environs of the village of Kurai on a southern meadow slope at a height of 1800 m.

The essential oils were obtained from the epigeal parts of these species by the steam distillation of the comminuted air-dry raw material. The amounts of essential oils and their physicochemical constants were determined by the methods usually adopted [6, 7]. For analytical GLC we used a Chrom-41 instrument with a flame-ionization detector, the carrier gas being nitrogen at a rate of 2 ml/min, and the stationary phase polymethyl-siloxane (PMS). Capillary column 0.2 mm \times 50 m, temperature of the evaporator 160°C and of the column 60°C . The components were identified from their relative retention times and from the increase in the volume of the peaks on the addition of authentic samples.

As a result of the investigation, the following indices were established for the essential oil of S. annua: yield 1.11% on the air-dry raw material, d_{20}^{20} 0.8313; n_D^{20} 1.4975; $[\alpha]_D^{20}$ +0.72°; acid No. 2.8; ester No. 14.9. A considerable amount of phenols was detected:

Tomsk State Medical Institute. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 290-291, March-April, 1989. Original article submitted July 15, 1988.